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In this work, we investigate two issues that are important to computational effi-
ciency and reliability in fluid dynamic applications of thelattice Boltzmann equation
(LBE): (1) Computational stability and accuracy of different lattice Boltzmann mod-
elsand (2) the treatment of the boundary conditions on curved solid boundaries and
their 3-D implementations. Three athermal 3-D LBE models (Q15D3, Q19D3, and
Q27D3) are studied and compared in terms of efficiency, accuracy, and robustness.
The boundary treatment recently devel oped by Filippovaand Hanel (1998, J. Comp.
Phys. 147, 219) and Mei et al. (1999, J. Comp. Phys. 155, 307) in 2-D is extended to
and implemented for 3-D. The convergence, stability, and computational efficiency
of the 3-D LBE models with the boundary treatment for curved boundaries were
tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct,
(2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and
(4) auniform flow over a sphere. We found that while the 15-velocity 3-D (Q15D3)
model ismore proneto numerical instability and the Q27D 3 ismore computationally
intensive, the Q19D3 model provides a balance between computational reliability
and efficiency. Through numerical simulations, we demonstrated that the boundary
treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses
satisfactory stability characteristics.  © 2000 Academic Press

KeyWords: | attice Boltzmann equation; boundary condition for curved geometries;
accuracy; 3-D flows.

. INTRODUCTION

1.1. Basic Notion of the Lattice Boltzmann Equation

In one fashion or another, conventional methods of computational fluid dynamics (CFD)
compute pertinent flow fields, such asvelocity u and pressure p, by numerically solving the
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Navier—Stokes eguations in space x and time t [1-3]. In contrast, various kinetic methods
use the transport equation, or the Boltzmann equation in particular, for various problemsin
fluid dynamics. The Boltzmann equation deals with the single particle distribution function
f(x, &, 1), where & is the particle velocity, in phase space (X, £) and time t. Recently, the
method of the lattice Boltzmann equation (LBE) [4—7] has become an aternative to the
conventional CFD methods employing Navier—Stokes equations. The theoretical premises
of the LBE method are that (1) hydrodynamics is insensitive to the detail s of microscopic
physics, and (2) hydrodynamics can be preserved so long as the conservation laws and
associated symmetries are respected in the microscopic or mesoscopic level. Therefore,
the computational advantages of the LBE method are attained by drastically reducing the
particle velocity space & to only a very few discrete points without seriously degrading
hydrodynamics. Thisis possible because the LBE method rigorously preserves the hydro-
dynamic moments of the distribution function f, such as mass density and momentum
fluxes, and the necessary symmetries [8-10].

One popular kinetic model is the Boltzmann equation with the single relaxation time
approximation [11],

of 1 ©
§+E~Vf_—i[f—f ] @

where £ isthe particle velocity, f(© isthe equilibrium distribution function (the Maxwell—
Boltzmann distribution function), and A is the relaxation time. The mass density p and
momentum density pu are the first (D 4 1) hydrodynamic moments of the distribution
function f and f©, where D isthe dimension of velocity space.

Tosolvefor f numericaly, Eq. (1) isfirst discretized in the velocity space £ using afinite
set of velocities {&,} without affecting the conserved hydrodynamic moments [9-11],

of, 1 (e
EJréa-Vfa_—X[fa—fa ] 2
In the above equation, f,(x,t)= f(X,&,,t) and f& = f@(x, &,,t) are the distribution
function and the equilibrium distribution function of the «th discrete velocity &,, respec-
tively. The 9-velocity (or 9-bit) LBE model on the 2-D square | attice, denoted as the Q9D2
model, has been widely used for simulating 2-D flows. For 3-D flows, there are several
cubic lattice models, such as the 15-bit (Q15D3), 19-bit (Q19D3), and 27-bit (Q27D3)
models [12], which have been used in the literature. All three models have arest particle
(with zero velocity) in the discretized velocity set {§,}. A minor variation of those models
isto removetherest particles from the discrete vel ocity set; the resulting models are known
as the Q14D3, Q18D3, and Q26D3 models, respectively. The LBE models with a rest
particle generally have better computational stability. For athermal fluids, the equilibrium
distributions for the Q9D2, Q15D3, Q19D3, and Q27D3 models are all of the form [9]

3 9 3
(e _ 2
£ = pw, 1+C2ea-u+—21(ea~u) ——2C2u-u, 3)

wherew,, isaweighting factor and e, isadiscretevelocity, c = §x /8t isthelattice speed, and
§x and 8t arethelattice constant and thetime step, respectively. (Thevalues of theweighting
factor w,, fortheQ15D3, Q19D 3, and Q27D 3 model sand thediagramsillustrating thelattice
structuresfor theQ15D3 and Q19D3 modelsaregiveninthe Appendix.) It can be shown that
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f (8 jsin fact a Taylor series expansion of the Maxwellian f © [8, 9]. This approximation
of f© by theabove f* makesthe method valid only intheincompressiblelimitu/c — 0.

With the velocity space discretized, the hydrodynamic moments of f and f© are eval-
uated by the following quadrature formulas:

/O—Zf _Zf(eq) (43)
pu_Zeafa_Zeaf@q) (4b)

The speed of sound of the above 3-D LBE modelsis ¢s = ¢/+/3 and the equation of stateis
that of anideal gas p = pc2. The viscosity of the fluid isv = AcZ.
Equation (2) is often discretized in space, x, and time, t, into

fo (X + €8t t +8t) — fo(Xi, t) = —%[fa(xi,t) — £, )], (5)

where T = A/8t. Thisis the lattice Boltzmann equation with the Bhathagar—Gross—Krook
(BGK) approximation [11] and is often referred to asthe LBGK model [4, 5]. The viscosity
in the NS eguation derived from Eq. (5) is

v = (t — 1/2)c2st. (6)

This choice for the viscosity makes the LBGK scheme formally a second order method
for solving incompressible flows [9]. The positivity of the viscosity requiresthat = > 1/2.
Equation (6) can be solved in the following two steps:

collision step:  fo(xi, t) = fu(xi, 1) — %[fa(xi,t) — £, 1], (7a)

streaming step:  f, (X + €,8t,t +8t) = f,(x, 1), (7h)

where f, denotes the post-collision state of the distribution function. It is noted that the
collision step is completely local, and the streaming step is uniform and requires little
computational effort. Equation (7) is explicit, easy to implement, and straightforward to
parallelize.

1.2. Boundary Condition on a Solid Surface

To date, most Neumann-type boundary conditions for a solid boundary used in the LBE
method are based upon the bounce-back boundary condition: A particlecolliding with asta-
tionary wall ssimply reverses its momentum. Much of the previous work on LBE boundary
conditionsis devoted to the analysis and improvement of the bounce-back boundary condi-
tion[13-21, 27]. The bounce-back boundary condition can attain second-order accuracy if
the boundary isfictictiously placed halfway between two nodes. That is, the second-order
accuracy of the bounce-back boundary condition can only be achieved when the boundaries
are located right in the middle of two neighboring lattices[ A = 0.5; see Eq. (8)]. (Readers
are referred to our recent work [22] for a summary of the previous work.) This prevents
the direct application of the bounce-back-type boundary conditions to simulate a solid
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FIG. 1. 2-D projection of the layout of the regularly spaced lattices and curved wall boundary.

body with smooth curvature. To circumvent this difficulty, Mei and Shyy solved Eq. (2)
in curvilinear coordinates using a finite difference method to solve for f, [28]. One can
also use body-fitted curvilinear coordinates with interpolation throughout the entire mesh,
except at the boundaries where the bounce-back boundary condition is used [29]. In more
recent works [22, 23], Cartesian coordinates are adopted with interpolation used only at the
boundaries. These techniques rely on the freedom of using interpolation techniques. We
used the latter technique in the present work.

AsshowninFig. 1 for a2-D projectioninvolving a3-D body, the streaming step requires
the knowledge of f2(xp, 1), in which e; = —e,, at x, on the solid side in order to obtain
fz(Xt, 8t) for the lattice node located on the fluid side at X = X, + €z8t. Defining

_ |Xf _Xw|
Xt — Xp|

®

as the fraction of an intersected link in the fluid region, it is seen that 0< A <1 and the
horizontal or vertical distance between x,, and x,, is (1 — A)8x on the cubic lattice.

Based on the work of Filippova and Hanel [23], hereinafter referred to as FH, Mei et al.
[22] proposed the following treatment for fz(xp, t) on curved boundaries:

fao. ) = @ =0 Falxe, ) + X157 06, 1) + 2wapc—32ea- Uy ©
with
f (b, 1) = wep(Xs, ) |1+ %ea Ui+ (@ UD? — U ug| (10)
c 2c4 2c2
and
Upf = (A —Dus/A+u,/A and x =R2A -1/t forA >1/2 (11)

Upf = Uss = Us(Xs +€z8t,t) and x = (RA—-1)/(t — 2) forA <1/2. (12)
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It is noted that Eq. (12) for uys and x differs from that originally proposed by FH. The
choicefor ups given by Eq. (12) improvesthe computational stability forz <land A <1/2
[22]. Since Egs. (9)—(12) arein vector form, they can be directly extended to 3-D flowswith
curved boundaries.

1.3. Scope of the Present Work

The present study examinestwo issuesin 3-D incompressible fluid dynamics simulations
with arbitrary boundaries using the LBE method: (i) The performance of various 3-D
athermal L BE modelsfor viscousflows, and (i) theefficacy and reliability of theextension of
the curved boundary treatment from 2-D to 3-D flows. Wefocuson the stability and accuracy
of thecomputation and therobustnessin handling anarbitrary curved geometry. In Sectionl,
amodification of the choice of u,; and the expression for x when A > 1/2 is proposed in
order tofurther improvethe computational stability of theboundary treatment. In Section11,
numerical resultsfor four 3-D steady flows are examined and various computational issues
are addressed. These four cases are: (i) pressure driven fully developed flow in a square
duct; (ii) 3-D lid-driven cavity flow; (iii) pressure driven fully developed flow in acircular
pipe; and (iv) uniform flow over a sphere. In cases (i) and (iii), the LBE-based numerical
solutions can be compared with known exact solutions so that the accuracy of the LBE
solutions can be determined. The difference in these two casesisthat A isaconstant in the
sguare duct while A varies around the solid boundary in the circular pipe. In the lid-driven
cavity flow, the singularities at corners between the moving and stationary walls allows for
a performance assessment of various LBE schemes. The flow past a sphere is an external
flow around a 3-D blunt body. In all four cases, detailed assessments are made in terms of
error norms and velocity profiles. It will be demonstrated that accurate and robust solutions
are obtained using the newly proposed boundary conditions along with the selected LBE
models.

I1. MODIFICATION OF THE BOUNDARY CONDITION FOR A >1/2

Equations (9)—<12) arefirst applied to afully devel oped pressure driven 2-D channel flow
by using the 3-D LBE model Q19D3. At theinlet (i =1) and exit (i = Ny, in which Ny is
the number of latticesin the x-direction) the following zero derivative condition isimposed
after the collision step:

foi=1j,k="f.i0i=21],k), (13)
fo =Ny, j, k)= foli=Nc—1,j, k. (14)

Atk = 1 and k= N, the sameisimposed:

fol,j k=1 = fud, j. k=2, (15)
fol,j k=N = fol, j, k=N, —1). (16)

The constant pressure gradient V p along the x-direction is treated as a body force and is
included in the solution procedure after the collision step and the enforcement of the above
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FIG. 2. Stability boundary of FHs schemein a square duct flow for A near 1.

zero-derivative conditions as

- - 3d .

fa(i,t) = fo(Xi, 1) — wagd—sea X,
where X is the unit vector along the x-axis. On the solid walls (y =0 and y = H), Egs. (9)—
(12) are used. The exact solution for the velocity isused asthevelocity initial condition. The
equilibrium distribution function f ¥ based on the exact solution for the velocity profile
isused astheinitial condition for f,. The pressure gradient is set to g—g =-1.0x 1075 All
computations are carried out using double precision.

It was found that the computations are stable for t closeto 0.5 (for example, T = 0.505)
aslong as A isnot too close to unity (for example, A <0.87). When A isequal to 1, stable
computation can only be carried out for T no smaller than 0.6. Figure 2 shows the stahility-
instability boundary for the channel flow simulation with asystemsize Ny x Ny x N, =5 x
35 x 5, near A = 1. Also shown by the dashed line is the stability—instability boundary for
thechannel flow simulation usingtheQ9D2 model andwithasystemsize Ny x Ny =5 x 35,
near A =1. Itisclear that similar behavior exists in both 2-D and 3-D channel flow simu-
lations. When the computation for the pressure driven flow in a square duct was carried out
using the Q19D3 formulation, asimilar stability-instability boundary was encountered.

Ideally, one would like to use a fixed value of  for the entirerangeof 0<A <1lina
simulation. Computational stability would then require the use of T around 0.6, instead of
avaluethat is closeto 0.5, which makes it difficult to ssmulate alower viscosity or higher
Reynolds number flow. To overcome the restriction imposed by the numerical stability
requirement due to interpolation, it would be useful if one could decrease the value of
x = (2A — 1)/7 given by Eq. (11). This can be accomplished by using

(17)

Upr =[1—3/2A)Jus +3/(2A)u,, and x =QRA—-1)/(t +1/2) forA > 1/2.
(18)
That is, the velocity ups isevaluated at (x, + 1/2€,), instead of at x;,, using theinformation
at x¢ and x,, through linear extrapolation.
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With Eq. (18) replacing Eq. (11), the channel flow simulations using the Q19D3 lattice
model are carried out again for A from 0.85 to 1. Satisfactory results for the velocity pro-
files are obtained for T = 0.505 with Ny x Ny x N; =5 x 35 x 5in terms of computational
stability. For A < 0.85, the accuracy of the solutions using Egs. (11) and (18) is the same
when the computations are stable.

I1l. RESULTS AND DISCUSSIONS

3.1. Fully Developed Flow in a Square Duct

For fully developedflow insideasquareduct of height H defined by theregion—a <y <a
and —a < z<a,wherea= H/2, theaxial velocity profile can befound in Ref. [24, p. 123]:

Uy, 2) = _lea*dp i {1 _ cosh(nrz/2a) cos(nny/Za). (19

w3 dx e cosh(n/2) n3
Figure 3 compares the exact axia velocity profiles at z=0 and the LBE-based solution
with A=0.2 and H =2a=32.4. A total of Ny x Ny x N, =13 x 35 x 35 grid points are
used. The pressure gradient is g—g = —1.0x 1078 and r = 0.52. The 19-bit model is used
in the simulations. Excellent agreement was obtained.

Figure 4a shows the dependence of relative L,-norm error,

12
{foH foH [ULBE(Y, 2) — Uexact (Y, Z)]2 dy dZ}

1/2
(15" o VBaa(y, 2 dy dz]

2= ; (20)

on the duct height or the lattice resolution H = Ny — 3 4+ 2A. Theintegral is evaluated by

‘.0 1 L L 1 L
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FIG. 3. Comparison of axial velocity profilesin apressure driven square duct flow at z= 0 between the exact
solution and the L BE-based solution with A =0.2.
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thetrapezoidal rule. Aswas demonstrated by Mei et al. [22], the boundary treatment results
in second order convergence for 2-D channel flow. Figure 4a clearly shows that the total
error (from both the flow field and the boundary condition) of the LBE solution in 3-D flow
decays quadratically.

Figure 4b shows the relative L ,-norm error E; as afunction of A in the duct flow using
13 x 35 x 35grid pointsand r = 0.52. For the purpose of comparison, therelative L ,-norm
error inthe 2-D channel flow simulation using the Q9D2 model with Ny =35 and r = 0.52
is also shown. The relative error is larger in 3-D duct flow than in the 2-D channel flow.
Nevertheless, the error exhibits the same qualitative behavior in both 2-D and 3-D as a
function of A.
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It should be noted that the accuracy of the Q9D2 model and the Q19D3 mode! isdifferent
inthe sensethat beyond the conserved moments (density and momentumin athermal fluids),
these two models have different accuracy in preserving higher order moments (fluxes)
[9, 10]. The Q9D2 model preserves all the moments up to second order in momentum
space, which include momentum fluxes, and maintains the isotropy of these moments,
whereas the Q19D3 model can preserve density and momentum, but cannot maintain the
same accuracy and isotropy of thefluxeslikethe Q9D2 model does. Theonly 3-D equivalent
of the Q9D2 model in terms of accuracy of the momentsisthe Q27D3 mode [9, 10].

3.2. Smulation Resultsfor 3-D Lid-Driven Cavity Flows

Lid-driven cavity flow hasbeen studied extensively inthe CFD community. M ost research
has been focused on 2-D problems. Limited numbers of reliable numerical results for
steady state 3-D cavity flows have been obtained in the past several years. In this study, the
multiblock finite difference solution of the NS equations obtained recently by Salom [25]
is used to compare with the present L BE-based results.

The size of the cavity is H3, the number of gridsis Ny x Ny x Nz, and Ny = Ny = N,.
The driving lid is placed at y=H, moving along the direction of x-axis with a speed
U =0.1in lattice units. Figure 5a compares profiles of horizontal velocity uy(y) obtained
using 33 x 33 x 33 lattices with the solution to the NS equations at x/H =z/H = 0.5 for
Re=400. All three LBE models (15-, 19-, and 27-bit) are used. For the 15-bit model,
the computation becomes unstable and blows up at this Reynolds number with 332 lattice
resolution and A = 0.5. For A =0.5, the 19- and the 27-bit models give very similar uy(y)
profiles and both underpredict slightly the magnitude of the minimum in the profiles. The
19-bit model is also used with A = 0.25; there is a slight overshoot in the velocity profiles
in comparison to theresultsin Ref. [25]. Figure 5b compares uy (y) profiles obtained using
the 15- and 19-bit |attice models on the 672 lattice grids and A = 0.5 with the NS solution
[25] at x/H = z/H = 0.5for Re= 400. Excellent agreement is observed. Clearly, the 19-bit
model is superior to the 15-bit model. Although the 15-bit model requires 21% less CPU
time and storage than the 19-bit model per lattice, it is not as robust as the 19-bit model
and may actually require more CPU time and memory to obtain areasonabl e solution since
more lattice points are clearly needed.

It should be noted that the stability property of the 19- and the 15-bit models is signifi-
cantly different. All LBE models have inherent spurious invariants because of their simple
dynamics [30]. However, the stability of the LBE models, which is very much affected
by these spurious invariants, differs from one model to another and also depends on other
factors such as boundary conditions and the local Reynolds number [30]. Among the three
3-D LBE models (Q15D3, Q19D3, and D27D3), the Q15D3 model istheleast isotropic and
therefore is more prone to numerical instability. Thisisindependently verified in a recent
work by Kandhai et al. [26]. It was observed that the Q15D3 model may induce artificial
checkerboard invariants which are the eigenmodes of the linearized LBGK collision oper-
ator at wave vector k = r; this can cause spatia oscillations to develop in the flow field at
high Reynolds number [30]. Although it was pointed out that the presence of solid wallscan
suppress the oscillation in certain cases, the solid walls in the present case actually excite
theoscillation by producing shear stress singularitiesat the corners between the moving and
the stationary walls. Clearly, the Q19D3 model is better suited to handle flow singularities
than the Q15D3 model in this case.
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(NS) solution at x/H =z/H = 0.5 for Re= 400 in alid-driven cavity flow.

Figure 6a compares the profiles of transversal velocity uy(x) obtained from various
3-D LBE models using 332 lattices (grids) with the NS solution at y/H =z/H = 0.5 for
Re=400. For A =0.5, we found that the results from the 27-bit model deviate more from
the NS results of Ref. [25] than the results of the 19-bit model with the same resolution in
the spatial region 0.1 < x/H < 0.6. Both models underpredict the extrema of the velocity
profile compared to the NS solution of Ref. [25]. For A =0.25, the results of the 19-bit
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aty/H =2z/H =0.5for Re=400in alid-driven cavity flow.

model dightly overpredict the extrema, also shown in Fig. 6a. However, the difference is
relatively smaller in both cases. Figure 6b shows velocity profiles with a resolution of 67°
grid points and the same Reynolds number Re = 400. With 67° | attice resolution, the result
of the 15-bit model significantly differsfrom the results of the 19-bit model and that of the
NS solution in Ref. [25]. These comparisons further suggest that the 19-bit model is better
than the 15-bit model in terms of accuracy and stability and better than the 27-bit in terms
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of computational efficiency. The 19-bit model represents a good compromise in terms of
both computational efficiency and reliability.

Figures 7 and 8 show the effect of Reynolds number (from 100 to 2000) on the pro-
files of horizontal velocity uy(y) a x/H =z/H =0.5 and transversal velocity uy(x) at
y/H =2z/H = 0.5 based on the Q19D3 model. For Re= 100, 400, and 1000, A =0.5is
used. Itisworth noting that for Re= 2000, thesystem size of 67°,U = 0.1, and r = 0.50325,
the LBE simulation with A = 0.5 eventually becomes unstable, although the steady-state
result of Re=1000isused astheinitial condition for Re=2000. When A =0.25isused on
the 67° lattice system, no computational instability occurs and the steady-state solution is
obtained. Weak spatial oscillationsintheuy (y) anduy(x) velocity profileswereobserved for
Re= 2000, whichindicatesthat further increasein Rewould requirebetter spatial resolution.
It is also worth pointing out that when FH's boundary condition [23] is used for Re= 2000
with A = 0.25, the solution eventually blows up even when converged results (based on the
present boundary condition for A =0.25) at Re= 2000 are used as theinitial condition.

3.3. Fully Developed Flowsinside a Circular Pipe

Figure 9 shows the 2-D projection of the discretized domain and the boundary nodes xy,
(denoted by solid symbols) on the yz planefor flow inside acircular pipe of radius R=9.5
lattice units. Geometrically, the LBE simulation of the pipeflow differsfrom that of the duct
flow in that the fraction of the intersected link A is not constant over the entire boundary.
Asseenin Fig. 4b, computational error can vary with A in the duct flow and the difference
inthe error can easily be aslarge as afactor of four for 0 < A < 1. Furthermore, the error is
the smallest when A isbetween 0.3t0 0.6. Hence, it is reasonable to expect that the overall
error in the solution will depend on the distribution of A inthe entire set of A.
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FIG. 8. Effect of Reynolds number on the y-component velocity profilesat y/H = z/H = 1/2 based on the
19-bit LBE solutionsin alid-driven cavity flow.
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FIG.9. Boundary nodes x, (solid symbols) for flow in a pipe of radius 9.5 lattice units.
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FIG. 10. Variation of relative errorsin the velocity profiles as afunction of pipe radius.

Figure 10 shows the relative L ,-norm error for the axial velocity profile defined as

_ {Z(yj,ZK)EQ[ULBE(y]- ) Zk) - Uexact(y] ’ Zk)]z}l/z

E, !
72 ,
[Z(Yj.,zk)efz uge(act()/j s Zk)]

(21)

where Q is the set of the discrete lattice grids inside the pipe, as a function of radius R
for R=35, 4.5,5.5, 9.5, 13.5, 18.5, and 23.5. The pressure gradient is % =-1.0x106
and t =0.52. It is noted that each simple summation in Eq. (21) is dightly less than the
exact integration over the entire circle due to the discretization. To ensure that such a
treatment does not affect the qualitative behavior of the error measurement, the centerline
axia velocity, uc, isaso compared with the exact solution and the error is defined as:

_ [Uc,LBE — Uc, exact]

E. = (22)

|uc,exact|

Itisseenthat E. behaves very similarly to E, and both are nonmonotonic. This oscillatory
behavior could be due to the difference in the distribution of A, which in turn resultsin the
difference of the dissipation due to the interpolation around the boundary. Shown also in
Fig. 10istheerror E; of the square duct flow solution (with A = 0.2) asafunction of equiv-
alent radius H /7 %2, which exhibits a quadratic convergence. Despite the nonmonotonic
behavior, it can still be seen that on average, E, and E. decay quadratically with increasing
radius and the accuracy in the pipe flow simulation is comparable to that in the square duct
flow simulation.

Figure 11 shows the axial velocity profilesin the pipe for R=3.5, 5.5, 9.5, and 13.5in
comparison with the exact solution. Even for avery small radius R = 3.5, the LBE solution
agrees with the exact solution remarkably well. A noticeable discrepancy in the velocity
profileat R=9.5isalso observed in E; and E; shown in Fig. 10.
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FIG. 11. Comparison of the axial velocity profiles between the LBE-based and the exact solutions for flow
inside a cicular pipe.

3.4. Smulation Results for a Uniform Flow over a Sphere

The conventional LBE scheme uses uniform meshes. Without local mesh refinement, it
is difficult to compute the external flow over ablunt body efficiently since alarge number
of grid points in the far field will be wasted. As a first attempt, the flow over a sphere is
computed within afinite region in the transversal directions.

As shown in Fig. 12, the outer boundary is placed at y=+H/2 and z=+H/2. At
y=—H/2, thelatticeis j = 2. The boundary conditionsat j =1 for f,’sare given by the
following linear extrapolation:

fo(i, 1, k) = 21,3, 2,k) — f, (i, 3, K). (23)

Thevelocity at j =2isset as

u@, 2, k) = ud, 3, k). (24)
YA yn outer boundary
== y=H2 1
- !
- |
— =) o
— o
!
— |
—_— }"-:—HJIZ I
z z=-H/2

FIG.12. Schematic for uniform flow over a sphere.
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FIG. 13. Comparison of the velocity profilesat x =0 for r = 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for Re= 10 and
H/r =5.

Similar treatment is applied at y = H/2 and z= 4+H /2. The extrapolation condition given
by Egs. (23) and (24) allow the flow to leave the outer boundary. This helps to reduce the
effect of the outer boundary on the flow field and on the drag force. At theinlet, a uniform
velocity profileisimposed at i = 1.5 (halfway between the first and second lattice points)
and Eq. (9) isapplied to obtain the condition for f, (1, j, k) with y = 0. Attheexit, asimple
extrapolation is used:

fO((NXaj’k)=2fOl(NX_1aj7k)_ fa(NX_25j’k)‘ (25)

On the surface of the sphere, Egs. (9), (10), (12), and (18) proposed in this work are used
to update the boundary conditionsfor f,’s. Only the 19-bit LBE model is used to simulate
the flow over a sphere.

Figure 13 showsthevelocity profileu (y) based on aseriesof computationscarried out for
several valuesof theradiusR=3.0, 3.2,3.4,3.6,3.8,and4.0for H/R=10at Re=10. The
resultsareobtainedwith r = 0.7. Figure 14 comparestheaxial velocity profile(at y = z=0)
for the same set of parameters. It is worth noting that the present LBE computation does
not have sufficient resolution for the given Reynolds number. Yet the vel ocity profiles agree
with each other accurately. The fact that we have obtained a spatially accurate solution
over arange of radii strongly suggests that the present boundary condition treatment for
curved geometry in the LBE method is capable of handling more complex geometrieswhile
maintaining good accuracy.

VI. CONCLUDING REMARKS

Three 3-D LBE models, including the 15-, 19-, and 27-bit models, have been assessed in
terms of efficiency, accuracy, and robustness in lid-driven cavity flow. While accurate 3-D
results can be obtained by using various LBE models, the 19-bit model is found to be the
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FIG. 14. Comparison of the centerline velocity (y =0) forr =3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for Re= 10 and
H/r =5.
best for the cases investigated. The 15-bit model exhibits velocity oscillations and is prone
to computational instability. The more complicated 27-bit model does not necessarily give
more accurate results than the 19-bit model with the same spatial resolution.

Inthisstudy, we have al so modified the boundary condition treatment for the LBE method
proposed by Filippovaand Hanel [23] and Mei et al. [22] when thefraction of theintersected
link on the boundary A is greater than one half. This improves the computational stability
when A iscloseto 1 and t closeto 1/2.

The simulations for flows in asquare duct and in acircular pipe indicate that the current
boundary condition treatment for curved geometries results in second-order accuracy in
3-D flows. The velocity profiles for flow over a sphere show good self-consistency of the
solution over arange of sphere radii used.

APPENDIX

The Q15D3 model has the following set of discrete velocities:

(0,0,0), a = 0; rest particle
e = < (£1,0,0)c, (0, &1, O)c, (0, 0, £1)c, a=12,...,6; groupl (A1)
(£1, £1, £1)c, a=7,8,...,14; group Il

and the weighting factor w,, is[12]

1/9, a=12,...,6; groupl (A2)

2/9, a = 0; rest particle
Wy =
1/72, a=7,8,...,14; group lllI.

The Q19D3 model has the following set of discrete velocities:
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FIG. Al. Discrete velocity vectors for the Q15D3 and Q19D3 lattices.

0,0,0), a = 0, rest particle
e, = ¢ (£1,0,0)c, (0, +1, 0)c, (0, 0, +=1)c, a=12...,6;groupl (A3)
(+1, +£1, 0)c, (%1, 0, £1)c, (0, =1, +1)c, a=7,8,...,18; groupll

and the weighting factor w, is[9]
1/3, o = 0; rest particle
wy = { 1/18, a=12...,6;groupl (Ad)

1/36, a=17,8,...,18; groupll.

The Q27D3 model has the following discrete velocities:

(0,0,0), o = 0; rest particle
_ J(£1,0,0)c, (0,£1,0)c, (0,0, £1)c, a=12 ...,6; groupl
& = (£1, +£1, O)c, (£1, 0, £1)c, (0, &1, +1)c, a=7,8,...,18; groupll
(£1, +£1, +1)c, a =19, 20,...,26;group |l

(A5)
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and the weighting factor w, is[9]

8/27, a = 0, rest particle

2/27, a=12,...,6; groupl
1/54, a=17,8,...,18; group |l
1/216, a=19,20,...,26; group IlI.

(A6)

Wy =

Intheabove, c = §x/5t, §x and &t arethelattice constant and thetime step size, respectively.
The lattice structures for the Q15D 3 and Q19D3 models are shown in Fig. AL
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