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In this work, we investigate two issues that are important to computational effi-
ciency and reliability in fluid dynamic applications of the lattice Boltzmann equation
(LBE): (1) Computational stability and accuracy of different lattice Boltzmann mod-
els and (2) the treatment of the boundary conditions on curved solid boundaries and
their 3-D implementations. Three athermal 3-D LBE models (Q15D3, Q19D3, and
Q27D3) are studied and compared in terms of efficiency, accuracy, and robustness.
The boundary treatment recently developed by Filippova and Hänel (1998, J. Comp.
Phys. 147, 219) and Mei et al. (1999, J. Comp. Phys. 155, 307) in 2-D is extended to
and implemented for 3-D. The convergence, stability, and computational efficiency
of the 3-D LBE models with the boundary treatment for curved boundaries were
tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct,
(2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and
(4) a uniform flow over a sphere. We found that while the 15-velocity 3-D (Q15D3)
model is more prone to numerical instability and the Q27D3 is more computationally
intensive, the Q19D3 model provides a balance between computational reliability
and efficiency. Through numerical simulations, we demonstrated that the boundary
treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses
satisfactory stability characteristics. c© 2000 Academic Press

Key Words: lattice Boltzmann equation; boundary condition for curved geometries;
accuracy; 3-D flows.

I. INTRODUCTION

1.1. Basic Notion of the Lattice Boltzmann Equation

In one fashion or another, conventional methods of computational fluid dynamics (CFD)
compute pertinent flow fields, such as velocity u and pressure p, by numerically solving the
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Navier–Stokes equations in space x and time t [1–3]. In contrast, various kinetic methods
use the transport equation, or the Boltzmann equation in particular, for various problems in
fluid dynamics. The Boltzmann equation deals with the single particle distribution function
f (x, ξ, t), where ξ is the particle velocity, in phase space (x, ξ ) and time t . Recently, the
method of the lattice Boltzmann equation (LBE) [4–7] has become an alternative to the
conventional CFD methods employing Navier–Stokes equations. The theoretical premises
of the LBE method are that (1) hydrodynamics is insensitive to the details of microscopic
physics, and (2) hydrodynamics can be preserved so long as the conservation laws and
associated symmetries are respected in the microscopic or mesoscopic level. Therefore,
the computational advantages of the LBE method are attained by drastically reducing the
particle velocity space ξ to only a very few discrete points without seriously degrading
hydrodynamics. This is possible because the LBE method rigorously preserves the hydro-
dynamic moments of the distribution function f , such as mass density and momentum
fluxes, and the necessary symmetries [8–10].

One popular kinetic model is the Boltzmann equation with the single relaxation time
approximation [11],

∂ f

∂t
+ ξ · ∇ f = −1

λ

[
f − f (0)

]
, (1)

where ξ is the particle velocity, f (0) is the equilibrium distribution function (the Maxwell–
Boltzmann distribution function), and λ is the relaxation time. The mass density ρ and
momentum density ρu are the first (D + 1) hydrodynamic moments of the distribution
function f and f (0), where D is the dimension of velocity space.

To solve for f numerically, Eq. (1) is first discretized in the velocity space ξ using a finite
set of velocities {ξα} without affecting the conserved hydrodynamic moments [9–11],

∂ fα
∂t

+ ξα · ∇ fα = −1

λ

[
fα − f (eq)

α

]
. (2)

In the above equation, fα(x, t) ≡ f (x, ξα, t) and f (eq)
α = f (0)(x, ξα, t) are the distribution

function and the equilibrium distribution function of the αth discrete velocity ξα , respec-
tively. The 9-velocity (or 9-bit) LBE model on the 2-D square lattice, denoted as the Q9D2
model, has been widely used for simulating 2-D flows. For 3-D flows, there are several
cubic lattice models, such as the 15-bit (Q15D3), 19-bit (Q19D3), and 27-bit (Q27D3)
models [12], which have been used in the literature. All three models have a rest particle
(with zero velocity) in the discretized velocity set {ξα}. A minor variation of those models
is to remove the rest particles from the discrete velocity set; the resulting models are known
as the Q14D3, Q18D3, and Q26D3 models, respectively. The LBE models with a rest
particle generally have better computational stability. For athermal fluids, the equilibrium
distributions for the Q9D2, Q15D3, Q19D3, and Q27D3 models are all of the form [9]

f (eq)
α = ρwα

[
1 + 3

c2
eα · u + 9

2c4
(eα · u)2 − 3

2c2
u · u

]
, (3)

where wα is a weighting factor and eα is a discrete velocity, c = δx/δt is the lattice speed, and
δx and δt are the lattice constant and the time step, respectively. (The values of the weighting
factor wα for the Q15D3, Q19D3, and Q27D3 models and the diagrams illustrating the lattice
structures for the Q15D3 and Q19D3 models are given in the Appendix.) It can be shown that
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f (eq)
α is in fact a Taylor series expansion of the Maxwellian f (0) [8, 9]. This approximation

of f (0) by the above f (eq)
α makes the method valid only in the incompressible limit u/c → 0.

With the velocity space discretized, the hydrodynamic moments of f and f (0) are eval-
uated by the following quadrature formulas:

ρ =
∑

α

fα =
∑

α

f (eq)
α , (4a)

ρu =
∑

α

eα fα =
∑

α

eα f (eq)
α . (4b)

The speed of sound of the above 3-D LBE models is cs = c/
√

3 and the equation of state is
that of an ideal gas p = ρc2

s . The viscosity of the fluid is ν = λc2
s .

Equation (2) is often discretized in space, x, and time, t , into

fα(xi + eαδt, t + δt) − fα(xi , t) = − 1

τ

[
fα(xi , t) − f (eq)

α (xi , t)
]
, (5)

where τ = λ/δt . This is the lattice Boltzmann equation with the Bhatnagar–Gross–Krook
(BGK) approximation [11] and is often referred to as the LBGK model [4, 5]. The viscosity
in the NS equation derived from Eq. (5) is

ν = (τ − 1/2)c2
s δt. (6)

This choice for the viscosity makes the LBGK scheme formally a second order method
for solving incompressible flows [9]. The positivity of the viscosity requires that τ > 1/2.
Equation (6) can be solved in the following two steps:

collision step: f̃ α(xi , t) = fα(xi , t) − 1

τ

[
fα(xi , t) − f (eq)

α (xi , t)
]
, (7a)

streaming step: fα(xi + eαδt, t + δt) = f̃ α(xi , t), (7b)

where f̃ α denotes the post-collision state of the distribution function. It is noted that the
collision step is completely local, and the streaming step is uniform and requires little
computational effort. Equation (7) is explicit, easy to implement, and straightforward to
parallelize.

1.2. Boundary Condition on a Solid Surface

To date, most Neumann-type boundary conditions for a solid boundary used in the LBE
method are based upon the bounce-back boundary condition: A particle colliding with a sta-
tionary wall simply reverses its momentum. Much of the previous work on LBE boundary
conditions is devoted to the analysis and improvement of the bounce-back boundary condi-
tion [13–21, 27]. The bounce-back boundary condition can attain second-order accuracy if
the boundary is fictictiously placed halfway between two nodes. That is, the second-order
accuracy of the bounce-back boundary condition can only be achieved when the boundaries
are located right in the middle of two neighboring lattices [� = 0.5; see Eq. (8)]. (Readers
are referred to our recent work [22] for a summary of the previous work.) This prevents
the direct application of the bounce-back–type boundary conditions to simulate a solid
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FIG. 1. 2-D projection of the layout of the regularly spaced lattices and curved wall boundary.

body with smooth curvature. To circumvent this difficulty, Mei and Shyy solved Eq. (2)
in curvilinear coordinates using a finite difference method to solve for f̃ α [28]. One can
also use body-fitted curvilinear coordinates with interpolation throughout the entire mesh,
except at the boundaries where the bounce-back boundary condition is used [29]. In more
recent works [22, 23], Cartesian coordinates are adopted with interpolation used only at the
boundaries. These techniques rely on the freedom of using interpolation techniques. We
used the latter technique in the present work.

As shown in Fig. 1 for a 2-D projection involving a 3-D body, the streaming step requires
the knowledge of f̃ ᾱ(xb, t), in which eᾱ = −eα , at xb on the solid side in order to obtain
fᾱ(x f , δt) for the lattice node located on the fluid side at x f = xb + eᾱδt . Defining

� = |x f − xw|
|x f − xb| (8)

as the fraction of an intersected link in the fluid region, it is seen that 0 ≤ � ≤ 1 and the
horizontal or vertical distance between xb and xw is (1 − �)δx on the cubic lattice.

Based on the work of Filippova and Hänel [23], hereinafter referred to as FH, Mei et al.
[22] proposed the following treatment for f̃ ᾱ(xb, t) on curved boundaries:

f̃ ᾱ(xb, t) = (1 − χ) f̃ α(x f , t) + χ f (∗)
α (xb, t) + 2wαρ

3

c2
eᾱ · uw (9)

with

f (∗)
α (xb, t) = wαρ(x f , t)

[
1 + 3

c2
eα · ub f + 9

2c4
(eα · u f )

2 − 3

2c2
u f · u f

]
(10)

and

ub f = (� − 1)u f /� + uw/� and χ = (2� − 1)/τ for � ≥ 1/2 (11)

ub f = u f f = u f (x f + eᾱδt, t) and χ = (2� − 1)/(τ − 2) for � < 1/2. (12)



684 MEI ET AL.

It is noted that Eq. (12) for ub f and χ differs from that originally proposed by FH. The
choice for ub f given by Eq. (12) improves the computational stability for τ < 1 and � < 1/2
[22]. Since Eqs. (9)–(12) are in vector form, they can be directly extended to 3-D flows with
curved boundaries.

1.3. Scope of the Present Work

The present study examines two issues in 3-D incompressible fluid dynamics simulations
with arbitrary boundaries using the LBE method: (i) The performance of various 3-D
athermal LBE models for viscous flows, and (ii) the efficacy and reliability of the extension of
the curved boundary treatment from 2-D to 3-D flows. We focus on the stability and accuracy
of the computation and the robustness in handling an arbitrary curved geometry. In Section II,
a modification of the choice of ub f and the expression for χ when � ≥ 1/2 is proposed in
order to further improve the computational stability of the boundary treatment. In Section III,
numerical results for four 3-D steady flows are examined and various computational issues
are addressed. These four cases are: (i) pressure driven fully developed flow in a square
duct; (ii) 3-D lid-driven cavity flow; (iii) pressure driven fully developed flow in a circular
pipe; and (iv) uniform flow over a sphere. In cases (i) and (iii), the LBE-based numerical
solutions can be compared with known exact solutions so that the accuracy of the LBE
solutions can be determined. The difference in these two cases is that � is a constant in the
square duct while � varies around the solid boundary in the circular pipe. In the lid-driven
cavity flow, the singularities at corners between the moving and stationary walls allows for
a performance assessment of various LBE schemes. The flow past a sphere is an external
flow around a 3-D blunt body. In all four cases, detailed assessments are made in terms of
error norms and velocity profiles. It will be demonstrated that accurate and robust solutions
are obtained using the newly proposed boundary conditions along with the selected LBE
models.

II. MODIFICATION OF THE BOUNDARY CONDITION FOR ∆ > 1 /2

Equations (9)–(12) are first applied to a fully developed pressure driven 2-D channel flow
by using the 3-D LBE model Q19D3. At the inlet (i = 1) and exit (i = Nx , in which Nx is
the number of lattices in the x-direction) the following zero derivative condition is imposed
after the collision step:

f̃ α(i = 1, j, k) = f̃ α(i = 2, j, k), (13)

f̃ α(i = Nx , j, k) = f̃ α(i = Nx − 1, j, k). (14)

At k = 1 and k = Nz , the same is imposed:

f̃ α(i, j, k = 1) = f̃ α(i, j, k = 2), (15)

f̃ α(i, j, k = Nz) = f̃ α(i, j, k = Nz − 1). (16)

The constant pressure gradient ∇ p along the x-direction is treated as a body force and is
included in the solution procedure after the collision step and the enforcement of the above
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FIG. 2. Stability boundary of FHs scheme in a square duct flow for � near 1.

zero-derivative conditions as

f̃ α(xi , t) = f̃ α(xi , t) − wα

3

c2

dp

dx
eα · x̂, (17)

where x̂ is the unit vector along the x-axis. On the solid walls (y = 0 and y = H ), Eqs. (9)–
(12) are used. The exact solution for the velocity is used as the velocity initial condition. The
equilibrium distribution function f (eq)

α based on the exact solution for the velocity profile
is used as the initial condition for fα . The pressure gradient is set to dp

dx = −1.0 × 10−6. All
computations are carried out using double precision.

It was found that the computations are stable for τ close to 0.5 (for example, τ = 0.505)
as long as � is not too close to unity (for example, � ≤ 0.87). When � is equal to 1, stable
computation can only be carried out for τ no smaller than 0.6. Figure 2 shows the stability-
instability boundary for the channel flow simulation with a system size Nx × Ny × Nz = 5 ×
35 × 5, near � = 1. Also shown by the dashed line is the stability–instability boundary for
the channel flow simulation using the Q9D2 model and with a system size Nx × Ny = 5 × 35,
near � = 1. It is clear that similar behavior exists in both 2-D and 3-D channel flow simu-
lations. When the computation for the pressure driven flow in a square duct was carried out
using the Q19D3 formulation, a similar stability-instability boundary was encountered.

Ideally, one would like to use a fixed value of τ for the entire range of 0 ≤ � ≤ 1 in a
simulation. Computational stability would then require the use of τ around 0.6, instead of
a value that is close to 0.5, which makes it difficult to simulate a lower viscosity or higher
Reynolds number flow. To overcome the restriction imposed by the numerical stability
requirement due to interpolation, it would be useful if one could decrease the value of
χ = (2� − 1)/τ given by Eq. (11). This can be accomplished by using

ub f = [1 − 3/(2�)]u f + 3/(2�)uw and χ = (2� − 1)/(τ + 1/2) for � ≥ 1/2.

(18)

That is, the velocity ub f is evaluated at (xb + 1/2 eα), instead of at xb, using the information
at x f and xw through linear extrapolation.
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With Eq. (18) replacing Eq. (11), the channel flow simulations using the Q19D3 lattice
model are carried out again for � from 0.85 to 1. Satisfactory results for the velocity pro-
files are obtained for τ = 0.505 with Nx × Ny × Nz = 5 × 35 × 5 in terms of computational
stability. For � < 0.85, the accuracy of the solutions using Eqs. (11) and (18) is the same
when the computations are stable.

III. RESULTS AND DISCUSSIONS

3.1. Fully Developed Flow in a Square Duct

For fully developed flow inside a square duct of height H defined by the region −a ≤ y ≤ a
and −a ≤ z ≤ a, where a = H/2, the axial velocity profile can be found in Ref. [24, p. 123]:

ux (y, z) = −16a2

µπ3

dp

dx

∞∑
n=1,3,5,...

[
1 − cosh(nπ z/2a)

cosh(nπ/2)

]
cos(nπy/2a)

n3
. (19)

Figure 3 compares the exact axial velocity profiles at z = 0 and the LBE-based solution
with � = 0.2 and H = 2a = 32.4. A total of Nx × Ny × Nz = 13 × 35 × 35 grid points are
used. The pressure gradient is dp

dx = −1.0 × 10−6 and τ = 0.52. The 19-bit model is used
in the simulations. Excellent agreement was obtained.

Figure 4a shows the dependence of relative L2-norm error,

E2 =
{∫ H

0

∫ H
0 [uLBE(y, z) − uexact(y, z)]2 dy dz

}1/2

[∫ H
0

∫ H
0 u2

exact(y, z) dy dz
]1/2 , (20)

on the duct height or the lattice resolution H = Ny − 3 + 2�. The integral is evaluated by

FIG. 3. Comparison of axial velocity profiles in a pressure driven square duct flow at z = 0 between the exact
solution and the LBE-based solution with � = 0.2.
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FIG. 4. (a) Dependence of relative L2-norm error on the lattice resolution H = Ny − 3 + 2� in steady state
pressure-driven duct flow simulations. (b) Relative L2-norm error as a function of � in steady-state pressure-driven
duct and channel flow simulations.

the trapezoidal rule. As was demonstrated by Mei et al. [22], the boundary treatment results
in second order convergence for 2-D channel flow. Figure 4a clearly shows that the total
error (from both the flow field and the boundary condition) of the LBE solution in 3-D flow
decays quadratically.

Figure 4b shows the relative L2-norm error E2 as a function of � in the duct flow using
13 × 35 × 35 grid points and τ = 0.52. For the purpose of comparison, the relative L2-norm
error in the 2-D channel flow simulation using the Q9D2 model with Ny = 35 and τ = 0.52
is also shown. The relative error is larger in 3-D duct flow than in the 2-D channel flow.
Nevertheless, the error exhibits the same qualitative behavior in both 2-D and 3-D as a
function of �.
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It should be noted that the accuracy of the Q9D2 model and the Q19D3 model is different
in the sense that beyond the conserved moments (density and momentum in athermal fluids),
these two models have different accuracy in preserving higher order moments (fluxes)
[9, 10]. The Q9D2 model preserves all the moments up to second order in momentum
space, which include momentum fluxes, and maintains the isotropy of these moments,
whereas the Q19D3 model can preserve density and momentum, but cannot maintain the
same accuracy and isotropy of the fluxes like the Q9D2 model does. The only 3-D equivalent
of the Q9D2 model in terms of accuracy of the moments is the Q27D3 model [9, 10].

3.2. Simulation Results for 3-D Lid-Driven Cavity Flows

Lid-driven cavity flow has been studied extensively in the CFD community. Most research
has been focused on 2-D problems. Limited numbers of reliable numerical results for
steady state 3-D cavity flows have been obtained in the past several years. In this study, the
multiblock finite difference solution of the NS equations obtained recently by Salom [25]
is used to compare with the present LBE-based results.

The size of the cavity is H 3, the number of grids is Nx × Ny × Nz , and Nx = Ny = Nz .
The driving lid is placed at y = H , moving along the direction of x-axis with a speed
U = 0.1 in lattice units. Figure 5a compares profiles of horizontal velocity ux (y) obtained
using 33 × 33 × 33 lattices with the solution to the NS equations at x/H = z/H = 0.5 for
Re = 400. All three LBE models (15-, 19-, and 27-bit) are used. For the 15-bit model,
the computation becomes unstable and blows up at this Reynolds number with 333 lattice
resolution and � = 0.5. For � = 0.5, the 19- and the 27-bit models give very similar ux (y)

profiles and both underpredict slightly the magnitude of the minimum in the profiles. The
19-bit model is also used with � = 0.25; there is a slight overshoot in the velocity profiles
in comparison to the results in Ref. [25]. Figure 5b compares ux (y) profiles obtained using
the 15- and 19-bit lattice models on the 673 lattice grids and � = 0.5 with the NS solution
[25] at x/H = z/H = 0.5 for Re = 400. Excellent agreement is observed. Clearly, the 19-bit
model is superior to the 15-bit model. Although the 15-bit model requires 21% less CPU
time and storage than the 19-bit model per lattice, it is not as robust as the 19-bit model
and may actually require more CPU time and memory to obtain a reasonable solution since
more lattice points are clearly needed.

It should be noted that the stability property of the 19- and the 15-bit models is signifi-
cantly different. All LBE models have inherent spurious invariants because of their simple
dynamics [30]. However, the stability of the LBE models, which is very much affected
by these spurious invariants, differs from one model to another and also depends on other
factors such as boundary conditions and the local Reynolds number [30]. Among the three
3-D LBE models (Q15D3, Q19D3, and D27D3), the Q15D3 model is the least isotropic and
therefore is more prone to numerical instability. This is independently verified in a recent
work by Kandhai et al. [26]. It was observed that the Q15D3 model may induce artificial
checkerboard invariants which are the eigenmodes of the linearized LBGK collision oper-
ator at wave vector k = π ; this can cause spatial oscillations to develop in the flow field at
high Reynolds number [30]. Although it was pointed out that the presence of solid walls can
suppress the oscillation in certain cases, the solid walls in the present case actually excite
the oscillation by producing shear stress singularities at the corners between the moving and
the stationary walls. Clearly, the Q19D3 model is better suited to handle flow singularities
than the Q15D3 model in this case.
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FIG. 5. Comparison of ux profiles using (a) 33 × 33 × 33 and (b) 67 × 67 × 67 lattices with a Navier–Stokes
(NS) solution at x/H = z/H = 0.5 for Re = 400 in a lid-driven cavity flow.

Figure 6a compares the profiles of transversal velocity uy(x) obtained from various
3-D LBE models using 333 lattices (grids) with the NS solution at y/H = z/H = 0.5 for
Re = 400. For � = 0.5, we found that the results from the 27-bit model deviate more from
the NS results of Ref. [25] than the results of the 19-bit model with the same resolution in
the spatial region 0.1 < x/H < 0.6. Both models underpredict the extrema of the velocity
profile compared to the NS solution of Ref. [25]. For � = 0.25, the results of the 19-bit
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FIG. 6. Comparison of uy profiles using (a) 33 × 33 × 33 and (b) 67 × 67 × 67 lattices with an NS solution
at y/H = z/H = 0.5 for Re = 400 in a lid-driven cavity flow.

model slightly overpredict the extrema, also shown in Fig. 6a. However, the difference is
relatively smaller in both cases. Figure 6b shows velocity profiles with a resolution of 673

grid points and the same Reynolds number Re = 400. With 673 lattice resolution, the result
of the 15-bit model significantly differs from the results of the 19-bit model and that of the
NS solution in Ref. [25]. These comparisons further suggest that the 19-bit model is better
than the 15-bit model in terms of accuracy and stability and better than the 27-bit in terms



LATTICE BOLTZMANN METHOD 691

FIG. 7. Effect of Reynolds number on the centerline (x/H = z/H = 1/2) velocity profiles, ux/U , based on
the 19-bit LBE solutions in a lid-driven cavity flow.

of computational efficiency. The 19-bit model represents a good compromise in terms of
both computational efficiency and reliability.

Figures 7 and 8 show the effect of Reynolds number (from 100 to 2000) on the pro-
files of horizontal velocity ux (y) at x/H = z/H = 0.5 and transversal velocity uy(x) at
y/H = z/H = 0.5 based on the Q19D3 model. For Re = 100, 400, and 1000, � = 0.5 is
used. It is worth noting that for Re = 2000, the system size of 673, U = 0.1, and τ = 0.50325,
the LBE simulation with � = 0.5 eventually becomes unstable, although the steady-state
result of Re = 1000 is used as the initial condition for Re = 2000. When � = 0.25 is used on
the 673 lattice system, no computational instability occurs and the steady-state solution is
obtained. Weak spatial oscillations in the ux (y) and uy(x) velocity profiles were observed for
Re = 2000, which indicates that further increase in Re would require better spatial resolution.
It is also worth pointing out that when FH’s boundary condition [23] is used for Re = 2000
with � = 0.25, the solution eventually blows up even when converged results (based on the
present boundary condition for � = 0.25) at Re = 2000 are used as the initial condition.

3.3. Fully Developed Flows inside a Circular Pipe

Figure 9 shows the 2-D projection of the discretized domain and the boundary nodes xb

(denoted by solid symbols) on the yz plane for flow inside a circular pipe of radius R = 9.5
lattice units. Geometrically, the LBE simulation of the pipe flow differs from that of the duct
flow in that the fraction of the intersected link � is not constant over the entire boundary.
As seen in Fig. 4b, computational error can vary with � in the duct flow and the difference
in the error can easily be as large as a factor of four for 0 ≤ � ≤ 1. Furthermore, the error is
the smallest when � is between 0.3 to 0.6. Hence, it is reasonable to expect that the overall
error in the solution will depend on the distribution of � in the entire set of �.
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FIG. 8. Effect of Reynolds number on the y-component velocity profiles at y/H = z/H = 1/2 based on the
19-bit LBE solutions in a lid-driven cavity flow.

FIG. 9. Boundary nodes xb (solid symbols) for flow in a pipe of radius 9.5 lattice units.



LATTICE BOLTZMANN METHOD 693

FIG. 10. Variation of relative errors in the velocity profiles as a function of pipe radius.

Figure 10 shows the relative L2-norm error for the axial velocity profile defined as

E2 =
{∑

(y j ,zk )∈�[uLBE(y j , zk) − uexact(y j , zk)]2
}1/2

[∑
(y j ,zk )∈� u2

exact(y j , zk)
]1/2 , (21)

where � is the set of the discrete lattice grids inside the pipe, as a function of radius R
for R = 3.5, 4.5, 5.5, 9.5, 13.5, 18.5, and 23.5. The pressure gradient is dp

dx = −1.0 × 10−6

and τ = 0.52. It is noted that each simple summation in Eq. (21) is slightly less than the
exact integration over the entire circle due to the discretization. To ensure that such a
treatment does not affect the qualitative behavior of the error measurement, the centerline
axial velocity, uc, is also compared with the exact solution and the error is defined as:

Ec = |uc,LBE − uc,exact|
|uc,exact| . (22)

It is seen that Ec behaves very similarly to E2 and both are nonmonotonic. This oscillatory
behavior could be due to the difference in the distribution of �, which in turn results in the
difference of the dissipation due to the interpolation around the boundary. Shown also in
Fig. 10 is the error E2 of the square duct flow solution (with � = 0.2) as a function of equiv-
alent radius H/π1/2, which exhibits a quadratic convergence. Despite the nonmonotonic
behavior, it can still be seen that on average, E2 and Ec decay quadratically with increasing
radius and the accuracy in the pipe flow simulation is comparable to that in the square duct
flow simulation.

Figure 11 shows the axial velocity profiles in the pipe for R = 3.5, 5.5, 9.5, and 13.5 in
comparison with the exact solution. Even for a very small radius R = 3.5, the LBE solution
agrees with the exact solution remarkably well. A noticeable discrepancy in the velocity
profile at R = 9.5 is also observed in E2 and Ec shown in Fig. 10.
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FIG. 11. Comparison of the axial velocity profiles between the LBE-based and the exact solutions for flow
inside a cicular pipe.

3.4. Simulation Results for a Uniform Flow over a Sphere

The conventional LBE scheme uses uniform meshes. Without local mesh refinement, it
is difficult to compute the external flow over a blunt body efficiently since a large number
of grid points in the far field will be wasted. As a first attempt, the flow over a sphere is
computed within a finite region in the transversal directions.

As shown in Fig. 12, the outer boundary is placed at y = ±H/2 and z = ±H/2. At
y = −H/2, the lattice is j = 2. The boundary conditions at j = 1 for fα’s are given by the
following linear extrapolation:

fα(i, 1, k) = 2 fα(i, 2, k) − fα(i, 3, k). (23)

The velocity at j = 2 is set as

u(i, 2, k) = u(i, 3, k). (24)

FIG. 12. Schematic for uniform flow over a sphere.
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FIG. 13. Comparison of the velocity profiles at x = 0 for r = 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for Re = 10 and
H/r = 5.

Similar treatment is applied at y = H/2 and z = ±H/2. The extrapolation condition given
by Eqs. (23) and (24) allow the flow to leave the outer boundary. This helps to reduce the
effect of the outer boundary on the flow field and on the drag force. At the inlet, a uniform
velocity profile is imposed at i = 1.5 (halfway between the first and second lattice points)
and Eq. (9) is applied to obtain the condition for fα(1, j, k) with χ = 0. At the exit, a simple
extrapolation is used:

fα(Nx , j, k) = 2 fα(Nx − 1, j, k) − fα(Nx − 2, j, k). (25)

On the surface of the sphere, Eqs. (9), (10), (12), and (18) proposed in this work are used
to update the boundary conditions for fα’s. Only the 19-bit LBE model is used to simulate
the flow over a sphere.

Figure 13 shows the velocity profile ux (y) based on a series of computations carried out for
several values of the radius R = 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for H/R = 10 at Re = 10. The
results are obtained with τ = 0.7. Figure 14 compares the axial velocity profile (at y = z = 0)
for the same set of parameters. It is worth noting that the present LBE computation does
not have sufficient resolution for the given Reynolds number. Yet the velocity profiles agree
with each other accurately. The fact that we have obtained a spatially accurate solution
over a range of radii strongly suggests that the present boundary condition treatment for
curved geometry in the LBE method is capable of handling more complex geometries while
maintaining good accuracy.

VI. CONCLUDING REMARKS

Three 3-D LBE models, including the 15-, 19-, and 27-bit models, have been assessed in
terms of efficiency, accuracy, and robustness in lid-driven cavity flow. While accurate 3-D
results can be obtained by using various LBE models, the 19-bit model is found to be the
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FIG. 14. Comparison of the centerline velocity (y = 0) for r = 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 for Re = 10 and
H/r = 5.

best for the cases investigated. The 15-bit model exhibits velocity oscillations and is prone
to computational instability. The more complicated 27-bit model does not necessarily give
more accurate results than the 19-bit model with the same spatial resolution.

In this study, we have also modified the boundary condition treatment for the LBE method
proposed by Filippova and Hänel [23] and Mei et al. [22] when the fraction of the intersected
link on the boundary � is greater than one half. This improves the computational stability
when � is close to 1 and τ close to 1/2.

The simulations for flows in a square duct and in a circular pipe indicate that the current
boundary condition treatment for curved geometries results in second-order accuracy in
3-D flows. The velocity profiles for flow over a sphere show good self-consistency of the
solution over a range of sphere radii used.

APPENDIX

The Q15D3 model has the following set of discrete velocities:

eα =



(0, 0, 0), α = 0; rest particle
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, α = 1, 2, . . . , 6; group I
(±1, ±1, ±1)c, α = 7, 8, . . . , 14; group III

(A1)

and the weighting factor wα is [12]

wα =



2/9, α = 0; rest particle
1/9, α = 1, 2, . . . , 6; group I
1/72, α = 7, 8, . . . , 14; group III.

(A2)

The Q19D3 model has the following set of discrete velocities:
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FIG. A1. Discrete velocity vectors for the Q15D3 and Q19D3 lattices.

eα =



(0, 0, 0), α = 0, rest particle
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, α = 1, 2, . . . , 6; group I
(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c, α = 7, 8, . . . , 18; group II

(A3)

and the weighting factor wα is [9]

wα =



1/3, α = 0; rest particle
1/18, α = 1, 2, . . . , 6; group I
1/36, α = 7, 8, . . . , 18; group II.

(A4)

The Q27D3 model has the following discrete velocities:

eα =




(0, 0, 0), α = 0; rest particle
(±1, 0, 0)c, (0, ±1, 0)c, (0, 0, ±1)c, α = 1, 2, . . . , 6; group I
(±1, ±1, 0)c, (±1, 0, ±1)c, (0, ±1, ±1)c, α = 7, 8, . . . , 18; group II
(±1, ±1, ±1)c, α = 19, 20, . . . , 26; group III

(A5)
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and the weighting factor wα is [9]

wα =




8/27, α = 0, rest particle
2/27, α = 1, 2, . . . , 6; group I
1/54, α = 7, 8, . . . , 18; group II
1/216, α = 19, 20, . . . , 26; group III.

(A6)

In the above, c = δx/δt , δx and δt are the lattice constant and the time step size, respectively.
The lattice structures for the Q15D3 and Q19D3 models are shown in Fig. A1.
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